
Brochure

Role-Based Secure
Development Training
Secure Development Training for everyone involved in the
software development lifecycle is a cornerstone of any application
security program and helps reduce the organization’s exposure
to application security risk.

Role-Based Secure Development Training

2

Most organizations are aware that secure development training is
a key security control that helps reduce application security risk.
However, it is all too often only available on an ad-hoc basis.
An effective secure development training program should feature:
• Mandatory training for all development personnel before they

participate in the application development process.
• Appropriate training based on individual needs—no more, no less.

For example, a regular Java developer should receive specific
training on how to develop secure Java code. A Java developer
for an e-commerce application will need more advanced training.

• On-demand capability that enables easy scheduling and minimizes
the impact on developers’ productivity.

• Scalability that suits the needs of everyone involved in development,
including third-parties if appropriate.

• Up-to-date content to ensure that new threats and technologies are
understood and addressed.

This eLearning offering is specifically designed to address these
requirements. It provides over 100 hours of application security training
material, divided into 13 role-based curricula. It is managed through
Fortify on Demand, our cloud-based application security platform.

Curricula Overview
The Developer curriculum provides a thorough grounding in application
security concepts. It includes programming language-specific
constructs and implementation best practices. Upon completion of the
course, developers will have a better appreciation of the importance
of secure coding and the knowledge to develop secure applications
in their chosen programming language and platform.

The Software Architect curriculum covers how to design secure
applications and includes architectural risk analysis and threat
modeling. Upon completion of the course, software architects will
know how to address application security risk at the application
design stage. Other curricula are provided for Project Managers
and Test/QA personnel.

Two levels of courses are offered. The Standard level is appropriate
for developers of low- to medium-risk applications and takes
approximately 5 hours to complete. The Premium level is designed
for developers of high-risk applications or security lead developers
and takes approximately 10 hours to complete.

Role-Based Training Delivered by Fortify on Demand
• Developer curricula for Java.NET, C/C++, and PHP
• Other curricula specific to Software Architect, Project Managers,

and Test/QA personnel
• Two training levels for maximum flexibility
• Topics include mobile, attack surface analysis, PCI, OWASP Top10,

and application risk reduction
• Technologies covered include .NET, Java, iOS, Android, C/C++, C#,

PHP, and HTML5
• Fully integrated with Fortify on Demand
• On-demand training minimizes the impact on developer productivity
• Available for training third-party developers
• Course completion is tracked to ensure compliance

3

Role-Based Secure Development Training

Curricula
The table below shows the courses included in the Standard and Premium curricula for each role:

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

AWA101 Fundamentals of Application
Security

● ● ● ● ● ● ● ● ● ● ● ● ●

COD102 The Role of Software
Security

● ● ● ● ● ● ● ●

COD103 Creating Software Security
Requirements

● ● ● ● ● ● ● ●

COD104 Designing Secure Software ● ● ● ● ● ● ● ●

COD105 Secure Software
Development

● ● ● ● ● ● ● ●

COD106 The Importance of
Integration and Testing

● ● ● ● ● ● ● ●

COD107 Secure Software Deployment ● ● ● ● ● ● ● ●

COD108 Software Operations and
Maintenance

● ● ● ● ● ● ● ●

COD110 Fundamentals of Secure
Mobile Development

● ●

COD153 Fundamentals of Secure
AJAX Code

● ● ● ●

COD281 Java Security Model ● ●

COD282 Java Authentication and
Authorization

● ●

COD283 Java Cryptography ● ●

COD284 Secure Java Coding ● ●

COD201 Secure C Encrypted Network
Communications

● ●

COD202 Secure C Run-Time
Protection

● ●

COD206 Creating Secure Creating
Secure C++ Code

● ●

COD207 Communication Security in
C++

● ●

COD307 Protecting Data in C++ ● ●

Continued on next page

Role-Based Secure Development Training

4

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

COD216 Leveraging .NET Framework
Code Access Security (CAS)

● ●

COD217 Mitigating .NET Security
Threats

● ●

COD246 PCI DSS 3: Protecting Stored
Cardholder Data

● ●

COD247 PCI DSS 34: Encrypting
Transmission of Cardholder
Data

● ●

COD248 PCI DSS 6: Develop &
Maintain Secure Systems
and Applications

● ●

COD249 PCI DSS 11: Regularly Test
Security Systems and
Processes

● ●

COD251 Creating Secure AJAX
Code—ASP.NET Foundations

●

COD252 Creating Secure AJAX
Code—Java Foundations

● ●

COD255 Creating Secure Code—
Web API Foundations

●

COD311 Creating Secure Code ASP.
NET MVC Applications

COD301 Secure C Buffer Overflow
Mitigations

●

COD302 Secure C Memory
Management

●

COD303 Common C Vulnerabilities
and Attacks

●

COD380 Protecting Java Code: SQLi
and Integer Overflows

●

COD381 Protecting Java Code:
Canonicalization, Information
Disclosure and TOCTOU

●

COD382 Protecting Data in Java ●

Continued on next page

5

Role-Based Secure Development Training

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

COD321 Protecting C# from
Integer Overflows and
Canonicalization Issues

●

COD322 Protecting C# from SQL and
XML Injection

●

COD323 Protecting Data in C# ●

COD315 Creating Secure PHP Code ●

COD316 Creating Secure iOS Code in
Objective C

● ●

COD317 Creating Secure iOS Code ● ●

COD318 Creating Secure Android
Code in Java

● ●

COD361 HTML5 Secure Threats ●

COD362 HTML5 Built-In Security
Features

●

COD363 Securing HTML5 Data ●

COD364 Security HTML5 Connectivity ●

COD352 Creating Secure jQuery
Code

●

COD411

COD412

Content can be found in
Creating Secure C Code
series, Creating Secure C++
Code Series, Protecting C
Code Series

DES101 Fundamentals of Security
Architecture

● ● ●

DES212 Architecture and Risk
Analysis

● ●

DES214 Securing Infrastructure
Architecture

● ●

DES215 Defending Infrastructure ● ●

DES216 Securing Cloud Instances ● ●

DES222 Applying OWASP 2017:
Mitigating Injection

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES223 Applying OWASP 2017:
Mitigating Broken
Authentication

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES224 Applying OWASP 2017:
Mitigating Sensitive Data
Exposure

● ● ● ● ● ● ● ● ● ● ● ● ● ●

Continued on next page

Role-Based Secure Development Training

6

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

DES225 Applying OWASP 2017:
Mitigating XML External
Entities

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES226 Applying OWASP 2017:
Mitigating Broken Access
Control

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES227 Applying OWASP 2017:
Mitigating Security
Misconfiguration

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES228 Applying OWASP 2017:
Mitigating Cross Site
Scripting

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES229 Applying OWASP 2017:
Mitigating Insecure
Deserialization

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES230 Applying OWASP
2017: Mitigating Use of
Components with Known
Vulnerabilities

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES231 Applying OWASP 2017:
Mitigating Insufficient
Logging & Monitoring
Vulnerabilities

● ● ● ● ● ● ● ● ● ● ● ● ● ●

DES311 Creating Secure Application
Architecture

●

ENG211 How to Create Application
Security Design
Requirements

●

ENG311 Attack Surface Analysis &
Reduction

●

TST101 Fundamentals of Security
Testing

● ●

TST251 Testing for SQL Injection ●

TST252 Testing for OS Command
Injection

●

TST253 Testing for Classic Buffer
Overflow

●

TST254 Testing for Cross-site
Scripting

●

TST255 Testing for Missing
Authentication for Critical
Function

●

TST256 Testing for Missing
Authorization

●

Continued on next page

7

Role-Based Secure Development Training

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

TST257 Testing for Use of Hard-
Coded Credentials

●

TST258 Testing for Missing
Encryption of Sensitive Data

●

TST259 Testing for Unrestricted
Upload of File with
Dangerous Type

●

TST260 Testing for Reliance on
Untrusted Inputs in a Security
Decision

●

TST261 Testing for Execution with
Unnecessary Privileges

●

TST262 Testing for Cross Site
Request Forgery

●

TST263 Testing for Path Traversal ●

TST264 Testing for Download of
Code without integrity Check

●

TST265 Testing for Incorrect
Authorization

●

TST266 Testing for Inclusion of
Functionality from Untrusted
Control Sphere

●

TST267 Testing for Incorrect
Permission Assignment for
Critical Resource

●

TST268 Testing for Use of a
Potentially Dangerous
Function

●

TST269 Testing for Use of a Broken
or Risky Cryptographic
Algorithm

●

TST270 Testing for Incorrect
Calculation of Buffer Size

●

TST271 Testing for Improper
Restriction of Excessive
Authentication Attempts

●

TST272 Testing for Open Redirect ●

TST273 Testing for Uncontrolled
Format String

●

TST274 Testing for Integer Overflow
or Wraparound

●

TST275 Testing for Use of a One-Way
Hash without a Salt

●

Continued on next page

763-000007-001 | M | 04/21 | © 2021 Micro Focus or one of its affiliates. Micro Focus and the Micro Focus logo, among others,
are trademarks or registered trademarks of Micro Focus or its subsidiaries or affiliated companies in the United Kingdom, United States
and other countries. All other marks are the property of their respective owners. A Micro Focus line of business

Contact us at CyberRes.com
Like what you read? Share it.

Code Course Java
Developer

.NET
Developer

C/C++
Developer

PHP
Developer

Mobile
Developer

Software
Architect

Project
Manager

Test/QA

Std Pre Std Pre Std Pre Std Std Pre Std Pre Std Pre Std

TST222 Testing for OWASP 2017:
Injection

●

TST223 Testing for OWASP 2017:
Broken Authentication

●

TST224 Testing for OWASP 2017:
Sensitive Data Exposure

●

TST225 Testing for OWASP 2017:
XML External Entities

●

TST226 Testing for OWASP 2017:
Broken Access Control

●

TST227 Testing for OWASP 2017:
Security Misconfiguration

●

TST228 Testing for OWASP 2017:
Cross Site Scripting

●

TST229 Testing for OWASP 2017:
Insecure Deserialization

●

TST230 Testing for OWASP 2017: Use
of Components with Known
Vulnerabilities

●

TST231 Testing for OWASP 2017:
Insufficient Logging and
Monitoring

●

Curricula are pursued per named user per year. Volume discounts apply.

Course content is provided through our partnership with Security
Innovation. For a detailed description of each course, click here.

For more information, email us at fodsales@microfocus.com.

https://www.cyberres.com
https://www.linkedin.com/showcase/micro-focus-security
https://twitter.com/MicroFocusSec
https://www.securityinnovation.com/training/software-application-security-courses/
mailto:fodsales%40microfocus.com?subject=

