
I

OLD DOGS NEW TRICKS:
ATTACKERS ADOPT EXOTIC
PROGRAMMING LANGUAGES
By the BlackBerry Research & Intelligence Team

An examination into the trend by threat actors and security researchers alike of leveraging new and uncommon
programming languages to evade detection and hinder analysis.

1 Overview

2 Introduction

3 Why Use Uncommon Programming Languages?
5 The Old Guard

5 Malware Analysis Tooling for the Uncommon Language

5 Thwarting Signature-Based Detection

6 Additional Layers of Obfuscation

7 Malware and Software Engineering

8 Cross-Compilation

8 Security Software Detection

9 Language Breakdowns
10 One Timeline to Bind Them All

11 DLang

12 The Current D Threat landscape

14 Nim

16 Rust

20 Go

25 Disassembly Comparison – Hello, World!

30 Language Adoption by Threat Actors

32 Security Community Adoption of
Uncommon Languages

36 Conclusions
37 Old Dog – New Tricks

38 Delphi & VB6 – Passing the Baton

39 Cobalt Strike and Shellcode Stagers – The (Not
So) New Frontier

40 Does Adoption in the Industry Mirror Adoption in the
Threat Landscape?

41 Go Is Becoming a “Go To” Instead of a “Go Where?”

42 Threat Hunting Efficiency Through Small Sample Sets

43 Dynamic Analysis More Effective for These Threats?

44 Final Thoughts

45 YARA Rule Release

50 References

CONTENTS

 OLD DOGS NEW TRICKS

Foreword

Malware authors are known for their ability to adapt and modify their skills and behaviors to take
advantage of newer technologies. That tactic has multiple benefits from the development cycle and inherent
lack of coverage from protective products. This paper will look into less prolific programming languages and
their use in the malware space. It is critical that the industry and customers understand and keep tabs on
these trends because they are only going to increase.

– Eric Milam1 , VP of Threat Research, BlackBerry

”
”

 OLD DOGS NEW TRICKS

OVERVIEW
Malware authors have a reputation for being slow to change what works for them. But that is not
always the case. Some malware groups have taken the opportunity to branch out and try new or “exotic”
programming languages to address pain points in their development process or to try to evade detection
by the security community.

The BlackBerry Research & Intelligence Team2 chose four
uncommon programming languages of interest to examine
over the course of this work: Go, D, Nim and Rust. This choice
was due in part to our detection methodology. We’ve identified
an increase in their use for malicious intent, and we have seen
an escalation in the number of malware families being identified
and published that use these languages. These languages have
also piqued our interest because they could be considered more
developed and they have a strong community backing.

Although this trend is nothing new, BlackBerry aims to shed light on
the state of the current threat landscape regarding these new and
emerging languages. We’ll cover both the reasons for their adoption
and what areas we expect to see a further uptick in as this trend
enters its next evolution.

And perhaps most importantly, we’ll discuss ways both private
individuals and corporations can address these growing risks.

Go Rust Nim DLang

FOUR UNCOMMON LANGUAGES OF INTEREST

INTRODUCTION
Technological advancements are one of the driving factors in modern society. New technologies can
revolutionize lives, improve efficiency at an incredibly large scale and permanently alter the status quo of
society. They also have the capacity to be misused by bad actors with ulterior motives or turned against
the very purpose for which they were created.

For example, although the concept of email had been around since
the advent of ARPANET in the 1970s, it didn’t reach mainstream
adoption until the explosion of the Internet in the mid-to-late 90s.
With it came a deluge of email abuses such as the ILOVEYOU3
computer worm in early 2000, which ran rampant and affected an
estimated 10% of all Internet-connected computers at the time.

Though not exclusive to computer science, this trend of abusing
new technology has been observed repeatedly with both new
and uncommon programming languages. Even though the initial
motivation for the creation of new programming languages is to
achieve an improvement on existing languages and technologies, it
is almost an eventuality that they will also be dissected by individuals
or groups for malicious use. That could happen through security

researchers creating a new proof of concept to help prevent future
threats or a threat actor using the new language to develop a new
malware variant.

From the use of Delphi and VB6 as a wrapper layer of malware, to a
rewrite of the now-infamous BazarLoader4 (named NimzaLoader)
in the Nim programming language, we’ve seen history repeat itself.
And we ask—why is this the case?

 OLD DOGS NEW TRICKS

3

WHY USE UNCOMMON
PROGRAMMING LANGUAGES?

New languages are typically adopted as they improve upon a deficit in an existing
language. Their creators could be in search of simpler syntax, performance boosts
or more efficient memory management. Or the nature of the new language could
better suit the environment in which it is to be used (for example, Internet of Things
devices use lower-level languages such as C or assembly).

The user-friendly nature of some languages can also drastically improve both ease
of development and the quality of life of the developer (for example, the pip package
manager for Python or npm for Node.js).

But first, let’s take a look at what got us to this point.

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

The Old Guard
Delphi and VB6 have been prominent within the threat landscape
since the early 2000s, when VB6 malware reached near-epidemic
levels. As quoted on VirusBulletin5, VB6 was well-known for being
difficult to reverse engineer: "Visual Basic is widely considered to
produce the most hated binaries in the history of reverse engineering

– indeed, on mentioning this topic to some reverse engineers, they
didn’t know whether to laugh or to cry".

Although VB6 has dropped somewhat in popularity since its
heyday of the 2000s, the Delphi programming language was still
actively being used to pack and wrap commodity malware such
as RemcosRAT and NanoCore until recently. This practice was
mentioned in a FireEye report in 20186.

These languages have forged the path that newer languages now
walk. History tends to repeat itself, and as such, we will be studying
the latest evolution of this trend within this report.

Malware Analysis Tooling for the
Uncommon Language
As we saw with VB6, certain languages can certainly hamper reverse
engineering efforts. Malware analysis tooling does not always
adequately support exotic programming languages. This failing
can make analysis efforts a more tedious experience because
the analyst must sift through unlabeled library code and rabbit-
hole subroutines.

This challenge is often amplified when the binary is statically linked,
where library routines are included within the binary by the linker,
as opposed to being resolved dynamically during runtime. These
library routines often have what appears to be garbled function
names. This situation is due to the disassembler not being able to
parse the language-specific metadata present within the binary or
identifying language-specific string literals.

This garbling occurs with the languages of focus within this white
paper, including Go, Rust, Nim and DLang. Binaries written in these
languages can appear more complex, convoluted and tedious when
disassembled, compared to their traditional counterparts based on
C/C++/C#. This white paper will explore that trend in greater detail
with respect to each language later.

In a similar vein, analysts could also be unfamiliar with the flow of
execution of these new languages. There can be a steep learning
curve to understand their intricacies or peculiarities. Malicious
developers can abuse the analysts’ lack of familiarity to make
the task of reverse engineering more tedious (though not by any
means impossible).

Thwarting Signature-Based Detection
Signature-based detection of malware depends on specific static
characteristics being present within a file. These are qualities about
the file that do not change and that do not require the file to be
executed for someone to visualize them.

Hashes are an example of a static characteristic, which requires
each byte to be identical within the target scope (that is, a hash
of the whole file or a hash of a certificate, etc.). Signatures like
YARA rules7 have a set of static properties or characteristics named
“conditions." Once they are met, the rule is fulfilled and can be seen
to match or trigger.

When malware is authored in a new language, as opposed to
what has been seen traditionally (for example, BazarLoader being
rewritten in Nim), signatures written to detect the previous iteration
will more than likely not match. New signatures will then have to
be created to detect these variants. This signature creation is done
either manually using human malware researchers or by using
artificial intelligence (AI). This trend holds true with other languages
and malware families as well.

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

5

 WHY USE UNCOMMON PROGRAMMING LANGUAGES?

5

Additional Layers of Obfuscation
An argument could be made that in the case of more uncommon
programming languages, the language itself acts as a layer of
obfuscation. Each of these languages is relatively new and has
little in the way of fully supported analysis tooling. As such, they
can appear quite alien under the hood. It is because of their relative
youth and obscurity that the languages themselves can have a
similar effect to traditional obfuscation and be used to attempt to
bypass conventional security measures and hinder analysis efforts.

We’re seeing a growing number of loaders and droppers written in
uncommon languages. These new first-stage pieces of malware are
designed to decode, load and deploy commodity malware such as
the Remcos and NanoCore Remote Access Trojans (RATs) as well
as Cobalt Strike8. They have been used to help threat actors evade
detection on the endpoint.

These complicating factors plus the languages’ slow rate of
adoption are largely why there are not many custom obfuscation
techniques currently available for these languages in the threat
landscape. That is not to say there are none currently available.
One of the most prevalent among the languages studied within
this paper is the “Gobfuscate” method. As the name suggests, this
obfuscation is Go oriented.

A note from the developer describes how Gobfuscate works:
“Gobfuscate manipulates package names, global variable and
function names, type names, method names, and strings.”

Gobfuscate has already been used in the wild in several Go-based
malware variants such as Blackrota9 and EKANS ransomware.
It was also used in the recently unveiled ChaChi RAT10 variant,
which was uncovered in June 2021 by the BlackBerry Research &
Intelligence Team.

Additional obfuscation methods include garble11 for Go, denim12
for Nim and obfstr13 for Rust. We've not observed DLang-specific
custom obfuscation methods in the wild yet.

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

 WHY USE UNCOMMON PROGRAMMING LANGUAGES?

Malware and Software Engineering
Although they might be overlooked by the developer community,
malware developers are at their core software engineers. We set out
to uncover exactly what it is about these new languages that would
entice software engineers to choose one over a more traditional
programming language—no matter which side of the corporate
fence they choose to sit on.

As we dug deeper, we discovered that each language has its own
benefits and drawbacks for different scenarios: C is not object
oriented, whereas C++ is. C++ is strongly typed, whereas Python
isn’t. Python is great for data science, but it is a less than ideal choice
for devices with limited performance. In non-software-engineering
terms, each language has areas of application where it excels and
areas where it fails.

Nim, for example, can be compiled into several languages such as C,
C++ and even JavaScript (yes, you read that right). DLang has many
syntax improvements over C as well as being fully interoperable
with (and syntactically similar to) C. Rust has very low overhead and
is very efficient where performance is concerned, and Go is touted
as C for the 21st century.

When choosing a language, a developer must weigh options
such as the target environment, syntax, purpose and suitability
of the language to the problem at hand. Furthermore, memory
management, static vs. dynamic linking and codebase extensibility
should all be major considerations as well as many others.

New languages often come with a higher degree of security
consideration, offering features such as memory-safe programming
by design. This functionality can protect the developer from
introducing easily overlooked security holes that can result in
memory-related bugs and vulnerabilities.

Why would threat actors be conscious of using these more secure
languages, you might ask? Well, the answer is quite simple—they
don’t want to leave themselves open to exploitation. This problem
was recently seen with EmoCrash14, where security researcher
James Quinn discovered that the infostealer malware Emotet15 was
vulnerable to a buffer overflow within the installation routine of the
main binary. In doing so, Quinn developed EmoCrash to leverage this
vulnerability and act as an Emotet "vaccine," preventing installation
of the malware in the first place.

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

Additionally, the use of new languages can help to demonstrate that
an individual, a development team or company is on the technological
cutting edge. It shows that they are using the most modern, most
efficient and most productive means of developing their products.
However, doing so can come at a cost—be it financial or temporal.

Much like in the business world, developers with experience in these
languages are hard to come by, and they can garner a higher salary.
This requirement increases the overhead for such a project.

In a similar vein, training existing developers to write code in these
languages can be a significant time investment. That is not always
the case, which we’ll discuss more later, but in a tight development
pipeline, it can still cause a deficit. Within the threat landscape,
these rules also apply, but there are still more reasons why security
researchers and threat actors alike could benefit from using these
uncommon languages.

We’ll investigate these in the following pages.

7

 WHY USE UNCOMMON PROGRAMMING LANGUAGES?

7

WHY USE UNCOMMON PROGRAMMING LANGUAGES?

Cross-Compilation
According to the latest statistics16 compiled by Statcounter, the
operating system market share leader for the previous 12 months
was Windows®, which holds 73.54% of the market. MacOS® follows
with a 15.87% market share.

Modern-day organizations use a mixture of these two operating
systems across departments for typical users' work. Back-end
systems and infrastructure are often heavily centered on Linux® OS.
Mobile devices have also seen an increase in use for work-related
applications. This scenario presents attackers with a conundrum
of sorts, having to potentially use different coding languages and
different tools or malware to target the various operating systems
depending on their target and goal.

In theory, cross-compilation provides attackers the option of
authoring the same malware variant (containing the same or similar
functionality) in one language and having it cross-compiled to target
different architectures and operating systems. This approach would
allow them to potentially cut down on the number of tools required
to meet their goals and to widen the net of any malicious campaign.

This is not a new concept by any means. The infamous Adwind
RAT17 had the ability to target multiple operating systems due to
it being written in platform-agnostic Java. The veritable plague
of Mirai18 botnet variants targeted a wide breadth of operating
systems and architectures. In more recent times, there have
been several instances of malware being written in Go and cross-
compiled to be deployed in campaigns targeting various system
types and organizations.

Another such example is the WellMess19 malware that targeted
Windows and Linux machines in mid-2020. This malware is believed
to have been developed by APT29, aka Cozy Bear20.

It is not only advanced persistent threat (APT) groups that have
been following this trend. In January 2021, a new malware targeting
cryptocurrency users dubbed ElectroRAT21 appeared. Similar to
WellMess, it was also developed in Go and was cross-compiled
to target users of Windows, macOS and Linux with Trojanized
applications as their means of infection vector.

Another such example is the WellMess variant that targeted
Windows and Linux machines in mid-2020. This variant is believed
to have been developed by APT29.

Security Software Detection
New developments in any industry generally lead to a wave of
necessary changes and improvements in accompanying workflows
and technologies. The cybersecurity sector is no different. The ever-
changing threat landscape, along with the proliferation of malware
written in what were once considered niche languages, means that
security software vendors and developers must stay ahead of the
curve or risk being overrun with new threats that they are unable to
detect and mitigate.

This proactive approach for improving support of alternative or
new technologies in the scope of cybersecurity requires running
a cyclical workflow. It centers around repeated and efficient threat

hunting for new entries, refining and testing new capabilities and
then deploying product improvements to users.

This workflow is an expensive and technically difficult task because
it largely depends on the quality and visibility of input data into the
cycle. If the input data does not give insight to current problem
areas, then it will be difficult to implement changes.

Vendors and developers must be clever because the pool for
samples written in less common languages is small. Larger and
more well-defined sample sets with wide feature coverage are
critical for math model training22. They’re also important for use
in threat detection engines, the creation and testing of detection
heuristics and the overall understanding of how threat actors are
using these technologies. For example, a lackluster sample set can
lead to higher trends of false positives and negatives. Insufficient
test samples might make the effectiveness of generated detections
less effective than expected.

Unfortunately, it is common to learn of deficiencies or holes in
security after an incident occurs. This reactive approach works
for most users in the general sense. But it comes with the notable
expense paid by the first unprotected victim—the sacrificial
lamb23, as it were—that led to the discovery of the threat. The goal
of any protective tooling is to reduce, ideally to zero, the number
of successful attacks on the user-base being protected by such
tools. Depending on a successful (or at least visible) breach or
incident to start making improvements towards detection makes
this method a non-starter.

8

 WHY USE UNCOMMON PROGRAMMING LANGUAGES?

8

9

LANGUAGE
BREAKDOWNS

LANGUAGE BREAKDOWNS

ONE TIMELINE TO BIND THEM ALL

2012

TeleBots
Backdoor

Convuster
MacOS
Adware

RustyBuer

2016 2018 2020

Encriyoko
Trojan

PlugX
Loader

Epsilon Red
Randomware

Nephiim
Ransomware

Coldfire

Zebrocy Nim
Downloader

NimzaLoader

Cobalt Strike
Stagers

DeroHE
Ransomware

DShell Remcos
Loader

VovalexOutCrypt

Shifr
Randomware

Zebrocy Go
Trojan

TeleGrab Go
Downloader

RobbinHood
Ransomware

HabitsRAT

Zebrocy Go
Downloader

ChaChi

Go BrutWellmess

Rust Linux
Backdoor

Go Rust

KEY

Nim DLang

Crome/Pass
PUP/

Password
Stealer

Although there has been some notable malware written in Go, Rust,
Nim and DLang since their inception, occurrences were few and far
between. Most of what has been found was written in Go.

These uncommon programming languages are no longer as rarely
used as once thought. Threat actors have begun to adopt them to
rewrite known malware families or create tools for new malware sets.

Figure 1 is a timeline of some prominent examples of malware
written in these languages throughout the last decade. This timeline
illustrates the uptick in their usage, particularly that of Rust, Nim
and D. It is worth noting that this is not an exhaustive list of malware
families developed in these languages:

Figure 1: Timeline of prominent examples of malware written in the languages of Go, Rust, Nim and DLang.

 LANGUAGE BREAKDOWNS

DLANG

Overview
According to a note on the developer’s website, “the general look of
D is like C and C++. This makes it easier to learn and port code to D.
Transitioning from C/C++ to D should feel natural. The programmer
will not have to learn an entirely new way of doing things.”

DLang, also known as D, first appeared in alpha form in 2001.
Development on this language continued until the first stable
release in January 2007.

Designed to be a multi-use programming language that follows
a C-like syntax, it offers a performance level on par with C++. It
aims to provide developers the means to author code quickly and
efficiently, with a low learning curve. It’s useful for a wide range of
applications including web development, machine learning (ML),
GUI applications, data analytics, kernel development and even AAA
video game development.

Furthermore, it is possible to compile DLang code to target a variety
of different architectures such as amd64, x86, PowerPC, AArch64,
MIPS64 and Sparc. It can also be used on all major operating
systems (OS) including Windows, Linux, macOS and even Android™
via various compiler supports.

As testament to its design and usefulness, DLang has recently
been adopted by several industry titans24 for various applications.
This trend indicates it is likely we’ll see further adoption and skillset
development within the industry in the coming decade.

Major Features
DLang has a variety of qualities that make it appealing to
malware authors:

It has an easy learning curve.

It can be cross-compiled to target various OSs and
architectures.

It’s suitable for the building of lightweight and/or
stand-aloneutilities.

It includes multiple paradigm support, including object-
orientated, structured and functional.

It draws inspiration from C/C++.

It’s suitable for the development of a wide range of project
and application types.

DLang

 LANGUAGE BREAKDOWNS

The Current D Threat Landscape
Given the ease of use for C programmers, and the fact that DLang
can be cross-compiled to target various OSs and architectures, this
means that (in theory, at least) it is an ideal language to be abused
for malice by threat actors.

At the time of writing, there have only been a handful of documented
instances of DLang being used in the development of executables
either by threat actors for malicious intent or by the security
industry for use in Professional Services offerings. The first was
a utility called “DShell” that was developed by FireEye for use in its
red-teaming services.

DShell

The existence of DShell25 was unwittingly unveiled to the public
in the aftermath of a breach suffered by FireEye. A suspected but
unnamed APT threat actor infiltrated its network in December of
2020, allowing FireEye’s tool to be placed into the hands of the
criminal community.

As its name suggests, DShell is a DLang-compiled red-team tool that
functions like a backdoor. It includes the ability to modify firewall
rules, contains an encoded payload and can connect to a command
and control (C2) channel.

Vovalex

The Vovalex26 ransomware family first made an appearance in the
wild in February of 2021. It is the first documented ransomware
written in the DLang programming language.

Vovalex uses Trojanized versions of commonly used applications
such as CCleaner as an infection vector. It typically drops and
runs the installer of the Trojanized file so as not to arouse the
victim’s suspicion. This Trojan runs as a sub-process of the
installer, which gives the user the impression that everything is
proceeding as expected.

In tandem, the Vovalex code begins its nefarious execution flow and
searches the host for targeted files and directories. It then encrypts
those files, appending a ".vovalex" extension to each one.

Vovalex is a relatively unsophisticated ransomware variant by today's
standards. It doesn't appear to contain any of the functionalities that
have become common in modern ransomware, including deleting
shadow copies, terminating processes and services, spreading
mechanisms or negatively impacting networking functionality.
Despite its somewhat "vanilla" appearance, it can still cause
significant damage to victims.

OutCrypt

The first mention of OutCrypt ransomware in the wild was in July
2020 in a tweet by the user @Amigo_A_. It was developed in DLang
and dubbed "OutCrypt" due to its appending of the extension “. _out"
to any encrypted files.

OutCrypt uses an unknown infection vector and has not been linked
to any known attacks yet. It also does not appear to drop any ransom
note or mention a ransom payment.

Upon execution, the malware begins to search through directories
for files to encrypt. A copy of that file is made and then encrypted
with an “. _out" file extension appended to it.

OutCrypt is unique in that during execution and subsequent file
encryption, it lacks both common modern ransomware techniques
and it fails to make ransom demands. It does not delete shadow
copies or contain any networking functionality. It does not drop
any ransom note or demand any ransom, and it does not contain
or display any way to contact the attackers.

There are several references in the code to "testing," and it appeared in
the wild under the name “dirtytest.exe,” which could point to it being
a proof of concept or a variant under development. Furthermore,
once OutCrypt is executed, it is possible to stop the execution of
the malware by hitting the shortcut keys "Ctrl + C."

Nevertheless, an infection by this ransomware will leave a user's
files unrecoverable. In this sense, it could be considered a destructor.
The threat’s motive isn't financial, but to destroy or renders a user's
files unusable, similar to the goals of a wiper malware.

DLANG
DLang

12

 LANGUAGE BREAKDOWNS

Interesting Samples from Our Own Hunting
RemcosRAT

First seen in the wild in 2016, RemcosRAT was developed and
marketed by a German firm called BreakingSecurity as a Windows
remote access utility. It is a relatively sophisticated RAT that has
been widely abused in many campaigns since its release. It provides
an attacker with an array of functionality to fully monitor and control
any Windows OS from XP onwards, performing activities such
as the following:

Terminating processes

Executing processes

Opening a network connection

Searching for files and directories

Keylogging

Activating a webcam

Uploading and downloading additional files from the Internet

Modifying existing files or folders

Updating itself

Playing or stopping audio

Earlier this year, the BlackBerry Research & Intelligence Team27
uncovered the use of DLang as a wrapper and loader. It was being
used to decode, load and deploy a RemcosRAT payload into the
memory of the victim’s computer.

As shown in Figure 2, a look at the strings from this threat reveals
references to Phobos, the standard DLang runtime library, as well
as the D compiler.

DLANG

RemcosRAT has been around for a while now and has appeared
in numerous forms among numerous campaigns. This recent
development could point to a potential trend where an obscure
language such as DLang is being used to add a new “coat of paint” to
an existing, powerful commodity malware. This strategy can result
in a new threat being given a new lease on life, especially regarding
attempts to bypass any existing detection mechanisms for it.

Figure 2: References to Phobos revealed in strings from RemcosRAT.

DLang

13

 LANGUAGE BREAKDOWNS

NIM

Overview
Nim is another notable language that is becoming increasingly
common due to several features that make it stand out from the
other options. Like more mature languages such as C, C++ and
Java, Nim is statically typed and compiled. Andreas Rumpf began
development in 2005 under the original “Nimrod” project name
(Nim in Action28).

In 2008, version 0.6.0 of the project was published. This date marked
the first release where the compiler was written and compiled in Nim
rather than being developed in Pascal, as it had been in previous
versions (see archived releases29). The current naming scheme of
“Nim” was effective as of version 0.10.230.

Major Features
Nim was designed with the following three goals in mind:

Efficiency—Nim binaries are native and dependency-free, not
requiring an underlying virtual machine or interpreter to convert and
execute code. This setup leads to small and easily redistributable
executables. Inspired by the likes of C++ and Rust, Nim offers
deterministic memory management and compile-time memory
safety checks for array bounding issues, overflows, null pointers
and more to help ensure reliability.

Expressiveness—The language is designed to support multiple
programming paradigms, including object-oriented programming.
This design makes code reuse and metaprogramming easier and
it allows for programs that can modify themselves at runtime. In
addition, there is built-in support for binding to C, C++ and Objective
C libraries with ease, allowing developers to make use of existing
functionality already implemented in those languages.

Nim

Elegance—Nim's syntax is inspired by Python, Ada and Modula.
It uses block indentation and allows for more human-readable
code, creating a relatively low barrier to entry for new developers.
Tracebacks are influenced by the Python implementation that
contains useful information to aid in the debugging process.

Nim can be cross-compiled for all major operating systems such as
Windows, Linux, BSD and macOS. These binaries can be statically
or dynamically linked, depending on customization at the time of
compilation. Nim also can produce JavaScript code, allowing for
coalesced client and server development.

Like many other modern languages, Nim offers a built-in package
manager, Nimble. It is designed to use Git and Mercurial repositories
as package sources. This design helps with ease of access and
supports package installation, publishing and configuration
validation, among other functionalities.

15

Notable Malware
BazarLoader – NimzaLoader

In February 2021, threat actor TA800 distributed new malware
in a phishing campaign. The samples were written in Nim, which
inspired the name NimzaLoader (also known as Nimar Loader).

NimzaLoader is typically distributed through phishing emails
that attempt to lure the user into clicking a link to a PDF, which
downloads and executes the malware. Though the C2 servers for
this campaign are no longer active, there is evidence that TA800 is
using NimzaLoader primarily to download further malware such as
Cobalt Strike as a secondary payload.

In the past, TA800 has been found predominantly using Trickbot31 or
BazarLoader (BazarBackdoor) in its attacks. It is uncertain whether
NimzaLoader is a variant of BazarLoader, but there are enough
distinct differences between the two that some analysts consider
NimzaLoader to be in its own malware family.

Zebrocy & Nim Loader

Zebrocy is a family of malware first seen in 2015. It is usually
delivered as an email attachment, and it targets embassies and
ministries of foreign affairs in Eastern Europe and Central Asia.

Over the years, Zebrocy has been rewritten in several different
programming languages. The first Nim downloader for it appeared
in 2019. APT28 leverages a multi-language kill chain to enhance its
detection evasion capabilities. The Zebrocy binary is written in Go,
and since 2019, its downloader is written in Nim. APT28 has used
uncommon languages repeatedly in its development processes.

DeroHE Ransomware

In January of 2021, the IObit forums were compromised and used
to distribute a version of the DeroHE ransomware. Various forum
users were emailed with offers for a free one-year subscription for
IObit products. People who decided to click the link for the download,
which was hosted on the compromised forum’s site, would get a ZIP
file with legitimate signed IObit files, plus one unsigned malicious
DLL written in Nim as a parting gift.

Cobalt Strike

Cobalt Strike has become a popular tool among adversaries for
command and control. As such, detecting and stopping the various
loaders used to download Cobalt Strike beacons is a task many
endpoint protection solutions have become very good at. Probably
to counter the increasing effectiveness of these products, various
loaders have been found that were written in Nim.

NIM
Nim

 LANGUAGE BREAKDOWNS

 LANGUAGE BREAKDOWNS

RUST

Overview
The Rust programming language project was started in 2006 by
Graydon Hoare as a side project while working at Mozilla Research32.
Within three years, Mozilla increased involvement and began
sponsoring the project after it reached testing milestones and
accomplished a level of maturity.

Since 2015, the Rust language has been an independent organization
from Mozilla while still being a major sponsor and contributor. Over
the years, Rust has grown and prospered, leading the language
to be used in many major applications, such as Mozilla’s own
Firefox® web browser.

Other companies such as Microsoft, Amazon Web Services (AWS),
Google, Facebook and Huawei are major sponsors and members
of the Rust Foundation, which is a nonprofit organization that acts
as a steward for the project33. As an example of vendor support,
Microsoft has open-sourced and continues to support a Rust
library34 for interacting with the Windows API. This support allows
for easy access to the functionality that Windows developers expect
from more mature languages such as C++.

Despite being a relatively new programming language, Rust is a fan
favorite among developers and has been voted as “most loved” in
five Stack Overflow developer surveys, including the most recent
2020 edition35. Rust combines the power of low-level control with
speed and memory efficiency, partially thanks to a lack of garbage
collection. Garbage collection is centered around automatic
memory management, present in languages like Java and Python,
but it comes at a performance cost.

Rust also offers a notable improvement in memory safety over
longer-lived languages such as C/C++. This feature has led to
development efforts to rework existing portions of high-profile
projects like the Linux kernel using Rust. Financial support from
Google and the Internet Security Research Group has ensured
development efforts go towards enhancing memory safety within
the Linux ecosystem36.

Rust

17

RUST

Major Features
Rust offers a way around some of the pain points common in other
popular language choices. Python and other dynamically typed
language developers will be all too familiar with “TypeErrors” during
debugging. This is something that the statically typed variables
in Rust avoid because these bugs are found during compile time.
Developers can efficiently control memory usage and significantly
increase performance37 while not risking segmentation faults,
use-after-free or buffer overflow situations that lead to errors and
vulnerabilities.

According to Microsoft engineer Matt Miller, around 70%38 of
Windows’ patched bugs over the last 12 years are memory safety-
related issues. This trend has been shown in the modern threat
landscape as well, where several high-profile incidents were caused
by unsafe memory management within the affected application.

Critical vulnerabilities like CVE-2021-3156 that affects sudo (a
*nix utility for privilege and account access management) allowed
unprivileged users to escalate their account privileges through
specific execution and arguments to the helper binary sudoedit.
This vulnerability was due to a user-accessible heap overflow.

Additional safety constructs that Rust employs, such as the
borrowing system, can lead to a drastic reduction in exploitation
of services and tooling that continues to plague legacy and
modern applications without these safeguards. In addition to
increased protective benefits, the ownership model offers boosts to
multiprocessing efficiency because it was developed with resource
sharing and concurrency as a foundational goal.

The user and development experience for Rust receives high praise
from the community39. Rust is installed and managed via Rustup,
which is a single toolchain manager. It allows for language updates,
release channel changes and (most notably) the ability to target
other platforms and architectures for cross-compilation.

Rust has various levels of build support. Common x86, x64 and
ARM architectures are fully supported along with others such as
PowerPC, IBM Z/s390 and embedded-focused targets. Additionally,
the Rust package manager, Cargo, resolves dependencies and
invokes the build process to create Rust binaries.

 LANGUAGE BREAKDOWNS

Per the Cargo documentation40, “it is only a slight exaggeration to
say that once you know how to build one Cargo-based project, you
know how to build all of them.” This statement highlights the ease
of use of the system. The Rust community is also strong, with a
large presence of open-source and shared Rust libraries available
at crates.io. There is also well-regarded documentation and many
ways to find assistance from others.

Rust

Notable Malware
The features and capabilities of Rust that lead it to be popular in the
community also mean that it was inevitable that threat actors would
use the language to create malware as well. Threat actors have
utilized Rust to develop new variants of existing malware, rewrite
backdoors or loaders to add complexity to common malware and
author entirely new malicious programs.

Convuster Adware

Convuster is Rust-based adware that targeted macOS systems
in March 2021. Most malware seen on macOS systems is
usually adware written in C, C++ or Swift. The exact method of
how Convuster arrives on a device is unknown, but it is probably
downloaded through other adware rather than directly by the user.
Once on a victim’s system, Convuster communicates with a (now
inactive) server and uses built-in macOS tools to run.

RustyBuer

Buer is a malware loader originally written in C that was first
seen being distributed through phishing campaigns in late 2019.
The Buer Loader is often sold in underground marketplaces and
used by malware as a service (MaaS) operators to download
ransomware or Trojans.

Earlier this year, a new variation of the Buer Loader rewritten in
Rust was found targeting more than 50 industry verticals. This new
variant was dubbed RustyBuer.

Despite its rewrite in a new language, RustyBuer maintains
compatibility with existing Buer backend C2 servers and panels.
RustyBuer has been seen in more sophisticated phishing campaigns.
Its rewrite into Rust makes it more likely to evade detection
compared to its C-language predecessor.

TeleBots Downloader and Backdoor

TeleBots, believed to originate from a Russian threat actor, has been
associated with attacks against Ukraine’s critical infrastructure in
the past. AlthoughTeleBots is usually seen using KillDisk malware,
researchers were able to link new ransomware and updated tools—
including a Rust Trojan downloader and backdoor—to the group in
2016 and 2017, respectively.

This group was seen distributing the Rust downloader through
spearphishing emails41 with attached Microsoft® Excel® documents
that contain malicious macros. Once the user enables the macro,
the Rust downloader is executed as the first stage of attack,

which ultimately downloads a Python backdoor and KillDisk as
the final stage.

In 2017, an enhanced version of the group’s previously heavily used
Python backdoor was also rewritten into Rust. The functionality of
the newer Rust backdoor remains largely unchanged, and it receives
commands from the TeleBot API like its predecessor. This setup
points to the possibility that the rewrite was mainly performed to
evade detection.

Early Linux Backdoor

In 2016, one of the earliest Rust malware samples was discovered
by antivirus vendor Dr. Web42. This Linux backdoor using IRC was
believed to be a proof of concept because the sample did not have
the capability to spread to other victims and (at the time of the blog
post) the associated IRC channel was not live. Dr. Web analysts
noted the ease with which they could target other operating systems
because Rust code can be cross-compiled for other OSs such as
Windows and macOS.

RUST

 LANGUAGE BREAKDOWNS

Rust

18

RUST

Notable Malware
Interesting samples from our own hunting

The BlackBerry Research & Intelligence Team has found notable
samples and frameworks that exemplify some of the recent
developments pertaining to the Rust language and its use by
malicious actors.

NanoCore Dropper

This Rust binary performs the important role of dropping an
otherwise easily identified malicious binary onto a victim’s device
and initiating execution. There is nothing necessarily notable about
the Rust binary other than the need for its existence, which shows
that the hardest part of a malware campaign is sneaking past
increasingly complex security systems.

As malware families such as NanoCore become more prevalent,
the effectiveness of security software towards those targets will
naturally increase. The modification of a particular layer of the
execution sequence might be all that it takes to return a campaign
to a functional state. There is little need to reengineer an entirely
new approach if iterative changes lead to a longer term of success.

PyOxidizer

PyOxidizer43 is another entry in a series of tools that attempt to make
the package maintenance and distribution of Python code easier.
It uses Rust to load and manage the execution of an embedded
Python interpreter. The user does not need to install Python or
sort out dependencies because the output of PyOxidizer is a Rust
binary for the configured toolchain that contains all necessary
components (including Python) bundled.

Threat actors commonly use other tools such as PyInstaller or
Py2exe that offer native binaries to execute Python code on victim
systems. PyOxidizer is another avenue that malicious actors
unfortunately take to make the most of existing Python tooling
wrapped in a package more unfamiliar to anti-malware software.
In this case, that is the execution of Rust binaries.

One common downside for these types of utilities, including
PyOxidizer, is that the resulting binary can be quite large. At
times, they can be many megabytes long because the Python
interpreter and any external dependencies must be packaged within
the final binary.

Web Browser Credential Theft

Chromepass44 is a utility that provides a Rust client designed to
extract passwords and cookies from a victim’s Chromium-based
browser and communicate them back to an accompanying listening
server. It is implemented with Python via PyInstaller. Rust does
most of the heavy lifting on the client side, extracting the password
and cookie data from the victim’s browsers and sending it back
to the attacker.

This tool advertises antivirus evasion as a core component, per the
project README. This is another example of Rust being used to
circumvent conventional defense strategies due to little support
for less common build components.

 LANGUAGE BREAKDOWNS

Rust

19

GO

Overview
Go was developed by Google in 2007 by Rob Pike, Ken Thompson
and Robert Griesemer. It was made public in 2009 and officially
released in 2012. They sought to address the disconnect they saw
between the older languages in use and the computing landscape
reality. Their belief45 was that “the problems introduced by multicore
processors, networked systems, massive computation clusters and
the web programming model were being worked around rather than
addressed head-on.”

Although it is obvious why Google wanted Go, many others have
adopted it along the way, including Twitch, Uber, Docker and
Soundcloud. Even though Go might not be the most “loved” language
among developers, it does score a podium spot in “most wanted.”
The monolith that is Google, along with companies that work with
it, could be a large factor as to why.

The Go website describes its purpose as “making it easy to build
simple, reliable, and efficient software.”

Simple—Go belongs to the C family, but with a more simplified
syntax. This construct means that Go programs should be easier
to read and learn than their C equivalents.

Reliable—Google has made a promise that there will be source-level
compatibility for the language and a standard library across Go v1.
For example, any code written in Go v1.1 need only be re-compiled
rather than being re-written, for Go v1.16 or future versions.

Efficient—Go maintains C runtime efficiency and builds on
compilation efficiency. Further, Go is fast. The secret is Goroutines46,
which are analogous to lightweight threads managed by the Go
runtime. Go provides a set of APIs for concurrency that abstracts
the developer away from many of the details and pitfalls.

Like the other languages mentioned above, Go can be cross-
compiled to all major operating systems as well as Android,
JavaScript and WebAssembly.

Software engineers and malware authors alike flocked to this
language, not only for stylistic reasons. Google backing the project
has also increased its popularity as well as the number of libraries
that have been made available.

 LANGUAGE BREAKDOWNS

Go

GO

Major Features
Go is an open-source, statically typed, compiled language. The
compiler was originally written in C but was rewritten with Go in
2015. This approach qualifies the language as self-hosted (for
example, the compiler is written in the same language as the
language it is compiling).

Go has a syntax like C, but unlike C, it also offers garbage collection,
structural typing and concurrency. And, like Rust, it also has memory
safety. In Go, memory management is handled automatically at
runtime, which helps to reduce common vulnerabilities caused by
memory safety issues.

Go was designed for the era of computing marked by large,
networked environments, where increases in core count were
outpacing clock increases. The documentation page explicitly
states, “It's a fast, statically typed, compiled language that feels
like a dynamically typed, interpreted language.” Go is in a sweet spot
for usage complexity that exists somewhere between more mature
compiled languages like C or C++ and interpreted languages like
Python or Ruby.

Go uses an advanced package tool (apt)-like47 package management
system, which simplifies the installation of external packages and
their dependencies by using the “go install” command. It also allows
developers to easily publish their own packages publicly so they
can be used by others.

Because Go statically links required modules, binaries tend to be
very large. A simple “Hello World” weighs in at around 2 MB. This
static linking has the added advantage of producing executables
that are stand-alone and require no additional files from the running
system, making distribution less complex.

Statically linking legitimate libraries can interfere with security
software because the inclusion of the wide array of supporting
library modules can make up most of the functionality (rather than
the user code). Special considerations must be made in machine
learning detection model training and heuristic development to
avoid potential pitfalls that could lead to false negative or false
positive convictions.

 LANGUAGE BREAKDOWNS

Go

21

GO

Notable Malware
ElectroRAT

In the latter half of 2020 and into the early months of 2021, the
cryptocurrency market was on a bull run spearheaded by Bitcoin.
With this buzz came a spike in cryptocurrency-related scams
designed to fleece investors of their holdings.

One such campaign was uncovered by researchers at Intezer
in January 2021. This threat, called ElectroRAT, included bogus
social media accounts, websites and a new malware RAT to tie
it all together.

ElectroRAT was written in Go and arrived in the form of Trojanized
versions of commonly used cryptocurrency-related applications.
These applications were hosted on fake websites, which users were
pointed to via advertisements and promotions on social media
and online forums.

Its primary goal was to target and pilfer the victims’ cryptocurrency
wallet. But, like any good RAT, it also was capable of additional
functionality such as screenshotting, keylogging, uploading and
downloading files as well as executing commands from the
victims’ console.

ElectroRAT is an excellent example of a threat actor using one of
the languages mentioned in this document to design and develop
a previously unseen malware variant from the ground up, for a
specific purpose or campaign. In this case, it was used to target
cryptocurrency users and then it was cross-compiled to target
all major desktop operating systems. This approach allowed it to
maximize its target victim base, all while using one malware variant.

EKANS

EKANS or “Snake” is an obfuscated ransomware written in Go and
unique for having specific industrial control system processes as
its targets. It also distinguishes itself as being a rare instance where
industrial operations are targeted not by a nation state, but by actors
motivated by financial gain.

Zebrocy in Go

A rewrite of the Zebrocy payload in Go was first seen as early as
2018. Additionally, a Zebrocy downloader executable developed
in Go was seen in the wild in October 2020. It was disguised as a
Microsoft® Word document.

WellMess

WellMess is a family of malware, usually associated with APT29,
seen targeting COVID-19 vaccine makers, among others. These
implants are cross-compiled for PE and ELF, and they support
HTTP, HTTPS and DNS communications. Newer variants support
PowerShell capabilities once a connection is established.

Early Go Dropper/Ransomware

Generally considered the first sample of a Go malware Trojan,
Encriyoko was first reported by Broadcom in late 2012. This threat
attempts to masquerade as an Android rooting tool, “GalaxyNxRoot.
exe." It drops two files: an information-stealing Trojan that exfiltrates
system data to a remote location and a downloader that retrieves an
encrypted file. The downloaded file is a ransomware that leverages
the Blowfish algorithm to encrypt the victims’ files.

 LANGUAGE BREAKDOWNS

Go

22

Go

23

GO

Go Analysis Roadblocks
As mentioned previously, due to their static linking, Go binaries are
typically relatively large in size. Although this should be an easy
file to digest, the sheer number of functions imported is high in
comparison to the functionality of the binary seen in other languages.

A common anti-analysis method for Go is “Gobfuscation48,” a tool that
“manipulates package names, global variable and function names,
type names, method names, and strings” by doing the following:

The differences can be seen in Figure 3. The top screenshot is of
an early ChaChi variant, and the bottom is a later variant after the
threat actors implemented Gobfuscate.

Refactoring the GOPATH with the hashes of names.

Hashing names of variables, structs, etc.

Obfuscating strings by replacing them with functions.

Although there are automated plug-ins for Binary Ninja49 and Cutter50,
anyone using other tools like IDA Pro or Ghidra must perform the
de-obfuscation process manually.

Figure 3: Top: Earlier ChaChi variant.
Bottom: Newer ChaChi variant with Gobfuscation implemented.

 LANGUAGE BREAKDOWNS

23

Go

24

GO

Interesting Samples from Our Own Hunting
Cobalt Strike

Threat actors and adversary emulators alike have fallen in love with
Cobalt Strike, making it perhaps the most popular framework in
use today. Purpose-built to assist in infection, C2 operations and
lateral movement, it is not surprising that payload beacons are
being implemented in these more obscure languages. In our own
hunting, a large portion of our resulting sample set turned up as
positives for Cobalt Strike indicators. Go, with its robust support,
cross-compatibility, and vast number of libraries, is currently an
ideal choice for new offensive development efforts.

ChaChi

BlackBerry researchers have recently identified a RAT written in Go
they named ChaChi51. The RAT is currently being used by the PYSA
(Mespinoza) ransomware operators as part of their toolset. ChaChi
is so named because of its use of Chashell and Chisel libraries,
rather than writing fully custom components.

The ChaChi malware has been used to attack government authorities,
healthcare organizations, educational institutions52 and other
private entities. The authors were very motivated to enhance the
malware to stay ahead of detection, developing improvements in
both code and tactic obfuscation along the way.

It also leverages the increasingly common “Gobfuscator” to muddle
string, package and field names. Although ostensibly developed
to prevent source code information disclosure, this tool has since
been co-opted by malware creators to burden analysis efforts.

ChaChi had been active for over a year before discovery. The state
of Go analysis, especially as it surrounds Gobfuscation, could have
contributed to this delay.

 LANGUAGE BREAKDOWNS

24

25

DISASSEMBLY COMPARISON –
HELLO, WORLD!

Development of software in various languages with the same workflow will result in notably different
output binaries. A simple “Hello World” exercise in each of the languages discussed in this report leads
to a wide array of differences in binary size and composition, build artifacts and metadata, and overall
complexity. This disparity is true even without any additional layers of obfuscation or routines to raise
the bar on analysis. As an additional note for comparison purposes, the same has been done for a C++
binary (see Table 1):

SIZE OVERVIEW FOR TEST “HELLO WORLD” SAMPLES

DISASSEMBLY COMPARISON – HELLO, WORLD!

LANGUAGE "HELLO WORLD" BINARY SIZE

D 877 KB

Nim 92 KB

Rust 438 KB

Go 2 MB

C++ 51 KB

26

Table 1: “Hello World” binary size comparison between different programming languages.

SIZE OVERVIEW FOR TEST “HELLO WORLD” SAMPLES

The binaries were compiled in release configuration where applicable.
We’ve done so to mimic a real-world use case, where analysts are
not likely to be lucky enough to encounter malware with debug and
symbol information.

As shown in Figures 4–19, all the test samples are using minimal
code to write a string to STDOUT on the command line. The methods
employed by each language to create the same terminal output led
to very different outcomes in terms of the binaries.

Each exercise has the accompanying main function that performs
the bulk of the user-defined code, along with a snippet of the total
function list aggregated by IDA Pro v7.6. This process was done to
show the variances between function naming, imported function
counts, and the overall execution format.

This exercise shows that although the result of printing a string
might be the same, analysis of these differing languages is not at
all similar. They all have their own intricacies.

Note the variance in function count and naming schemes as well
as the disassembly differences in programs that all accomplish the
same output. In the real world, the scale of the code we encounter is
far greater than a single print along with added layers of obfuscation
to make analysis more complex and time-consuming for researchers.

Figure 5: C++ “Hello World” disassembly (main).

Figure 4: C++ “Hello World” code contents.

Figure 6: C++ “Hello World” function list.

DISASSEMBLY COMPARISON – HELLO, WORLD!

SIZE OVERVIEW FOR TEST “HELLO WORLD” SAMPLES

DISASSEMBLY COMPARISON – HELLO, WORLD!

Figure 7: DLang “Hello World” code contents.

Figure 9: DLang “Hello World” function list.

Figure 10: Nim “Hello World” code contents.

Figure 11: Nim “Hello World” disassembly (main).

Figure 13: Nim “Hello World” function list.

Figure 12: Nim “Hello World” disassembly (inner main, echo call highlighted).

28

Figure 8: DLang “Hello World” disassembly (main).

SIZE OVERVIEW FOR TEST “HELLO WORLD” SAMPLES

DISASSEMBLY COMPARISON – HELLO, WORLD!

Figure 14: Rust "Hello World" code contents.

Figure 15: Rust “Hello World” disassembly (main).

Figure 16: Rust “Hello World” function list.

Figure 17: Go “Hello World” code contents.

Figure 19: Go “Hello World” function list.

Figure 18: Go “Hello World” disassembly (main).

30

LANGUAGE ADOPTION BY
THREAT ACTORS

31

Although C-language malware is still the most widespread,
threat actors such as APT28 and APT29 have been using these
unconventional programming languages in their malware sets more
often than other groups.

APT28 or Fancy Bear is a Russian state-sponsored group that
has been operating since 2004. The group has frequently made
headlines worldwide and is most notably known for allegedly
hacking the United States’ Democratic National Committee in an
attempt to influence the 2016 presidential election. APT28 has been
involved and associated with a wide range of attacks and malware
families, but the Zebrocy malware family notably uses multiple
uncommon programming languages within its kill chain.

The first sample of Zebrocy seen in 2015 was made up of three
components: a Delphi downloader, an AutoIT downloader and
a Delphi backdoor. Regardless of the programming language
Zebrocy has been written in, the malware is spread through
phishing campaigns that contain an initial Trojan that will attempt
to communicate with a C2 server and execute a downloader to
drop a malicious payload via an established backdoor. Though the
malware has seen multiple rewrites and has evolved over time, the
method of delivery via email attachment and general functionality
remains largely the same.

In 2018, analysts linked a Go Trojan to APT28 and identified it
as a rewritten version of the original Zebrocy Delphi downloader.
In the years following, most recently in 2020, Go has proven to
be an APT28 favorite because the other core components of
Zebrocy—the backdoor payload and downloader—were also found
rewritten into Go.

In 2019, a Nim downloader was found alongside the Go backdoor
in the same Zebrocy campaign targeting embassies and ministries
of foreign affairs in Eastern Europe and Central Asia. The group is
still active and was last seen using the COVID-19 pandemic as a
lure to deliver the Go downloader variant in late 2020.

Like APT28, APT29 (known as Cozy Bear) is also a Russian threat
actor group found to be using Go in recent malware sets. The group
is best known for its involvement in the SolarWinds compromise53 in
early 2020. APT29 was seen targeting Windows and Linux machines
in 2018 with WellMess, a RAT written in Go and .NET.

The Go version of WellMess is the most prevalent and comes in
both 32- and 64-bit variants as PE and ELF files, giving APT29 the
ability to deploy it to more than one type of architecture and OS. The
group typically gains access to a victim’s network by performing
vulnerability scans of an organization’s external IP addresses and
using public exploits against the vulnerable systems they encounter.

In 2020, APT29 was seen using a more sophisticated version of
WellMess in attempts to steal information about COVID-19 vaccine
development from multiple organizations located in the U.K., the
U.S. and Canada. Although the newer variant is still written in Go, the
threat group has added more complexity to the malware, including
more network communication protocols and the ability to run
PowerShell scripts post-infection.

Both threat actors are still active and have conducted some of
the most impactful Russian cyberattacks to date. Recent activity
suggests that these groups have been using the uncommon
programming languages mentioned in this paper to add complexity
to their malware, target multiple platforms and evade detection.

LANGUAGE ADOPTION BY THREAT ACTORS

LANGUAGE ADOPTION BY THREAT ACTORS

32

SECURITY COMMUNITY ADOPTION
OF UNCOMMON LANGUAGES

33

Developers and threat actors are not the only groups capitalizing on the popularity and benefits
of these newer programming languages. In recent years, the security community has also
adopted these languages and used them for their offensive advantages in implementations
such as Red Team tools. Many of these tools are open-sourced or publicly available. They
reference features such as cross-compilation and efficiency in their repositories as motives
behind using these more uncommon languages.

In December 2020, FireEye reported that a sophisticated threat actor had gained unauthorized
access to its Red Team tools. As a countermeasure, FireEye publicly released a statement
along with a GitHub repository54 containing detection signatures to help identify the stolen
tools. In this repository, FireEye revealed that its Red Team had been using a combination
of specially modified, publicly available tools as well as tools that were created in-house for
the team. These were written in various languages including Go, DLang and Rust.

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

34

DLang
Though these languages are now beginning to gain traction, DLang
security tools are still uncommon. However, among the tools
that were included in the disclosure, FireEye listed a backdoor
named DShell written in DLang that was specifically developed
for its Red Team.

Nim
Given that Nim is still relatively young in the world of programming
languages, offensive tooling written in Nim is still a rarity. Currently,
OffensiveNim55 is one of the only major offensive toolsets available.

The GitHub repository for this tool contains detailed documentation,
where its creator outlines their “experiments in weaponizing Nim”
along with the reasoning behind selecting Nim as the language of
choice. Several of the reasons included (such as cross-compilation
and similarities to Python) overlap with the same features of Nim
that appeal to both threat actors and developers.

Although OffensiveNim is not yet a complete framework like
PowerShell Empire or Metasploit, the repository contains general
offensive operations written in Nim and tips on how to use the
tools. Additionally, the repository provides several ready-to-use
examples, including the ability to run .NET code from memory,
embed a ZIP file that is decompressed at runtime and various ways
of running shellcode.

OffensiveNim appears to still be under development, with more
examples currently listed as works-in-progress. It was last
updated in June 2021.

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

35

Rust
Although Rust is also new to the playing field, the language is slowly
gaining popularity among the security community. It has been used
in new offensive toolsets and spin-offs of preexisting popular tools
such as DirBuster.

Matryoshka, another tool that was stolen in the FireEye breach,
is a multi-stage Red Team tool written in Rust. This tool works by
downloading a first-stage payload, running second-stage malware
via a dropper and then installing the actual payload. Matryoshka
utilizes process-hollowing to evade detection.

Feroxbuster56 is described as a “simple, fast, recursive content
discovery tool written in Rust” by its developer. The brute-force
tool was combined with a wordlist to search for unlinked content
in targeted directories. It is specifically designed to perform
forced browsing, which is an attack where the aim is to search and
access resources that are not referenced by the application but are
still accessible.

Feroxbuster shares many similarities with other content discovery
tools such as DirBuster and Gobuster. As evidence of the language’s
increasing popularity, the tool was named Feroxbuster after the
creator discovered that another Rust-written content discovery tool
with the name they wanted already existed. Feroxbuster is updated
frequently and was recently added to official Kali Linux repositories.

Go
Despite being the youngest language on our list, Go has been
adopted widely by the infosec community, specifically by Red
Teamers. Go has seen many Red Team tools rewritten or purpose-
built just for it. Its speed and cross-compatibility are seen as huge
pluses. There is a large spectrum of uses for offensive practitioners,
from web brute-forcers to payload generators. Go-based tools are
supported by large organizations for use in custom applications.

The FireEye Red Team tools disclosure showed that it had created a
multi-platform Go RAT. Additionally, Go is leveraged for the Bishop
Fox adversary emulation tool, Sliver. Further, Bishop Fox has put in
the effort of forking another Go obfuscation tool called Garble, and
it continues to add development effort for use in Sliver.

The popular C2 framework Merlin is completely written in Go for the
purpose of being natively cross-platform. It’s clear that the security
community sees value in the concurrency, efficiency and cross-
compilation that Go offers.

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

SECURITY COMMUNITY ADOPTION OF UNCOMMON LANGUAGES

35

36

CONCLUSIONS

OLD DOG – NEW TRICKS

Older malware written in traditional languages like C++ and C# is actively being given new life with
droppers and loaders written in exotic languages, such as those mentioned in this work. Typically, the
older malware will be stored in encrypted form within the first stage, using XOR, RC4, AES or other
methods of encryption and encoding.

Once decoded, the binary is dropped to disk and executed (by a
dropper) or injected into a running process and loaded into memory
(by a loader). This is an attractive proposition for threat actors
because they do not need to go to the lengthy effort of recoding the
malware and instead can “wrap” it in one of these delivery methods.

Although we have seen Go used for these methods for some
time now, we have observed this trend beginning to take effect
with languages like D (with RemcosRAT), Rust (with NanoCore)
and Nim (with Zebrocy and Cobalt Strike). Although wrappers
and loaders are more cost-effective, some well-resourced threat
actors are beginning to rewrite their existing malware using exotic
languages. Examples of this trend are the switch from BazarLoader
to NimzaLoader and from Buer to RustyBuer. The pseudonyms are
used to track them by referencing the name of the language.

Existing signatures might have caught the second stage of a Dropper
or Loader when using an existing well-known piece of malware,
either when dropped to disk or loaded into memory. But these
rewrites have the potential to hamper security solutions because
existing static signatures will likely fail.

There might also be a less obvious reason for creation of these
rewrites. When learning a new programming language, it is easier to
recreate a solution you’ve built before. With an understanding of an
existing solution, developers have only to concentrate on increasing
their knowledge of the language, rather than battling the steeper
learning curve of a new language and a new solution.

This approach could pave the way for malware developers with
newfound experience in these languages to incorporate them as a
more integral part of their toolkit.

CONCLUSIONS

Although Delphi and VB6 helped to create the trend of using more uncommon languages to create
malware, they have now in effect passed the baton to newer, more recent languages such as those
mentioned within this report. As late as 2018, malware such as RemcosRAT and NanoCore were seen
packed using a Delphi first stage. We have now observed these malware families being wrapped within
the D and Rust languages.

There are several different factors responsible for this evolution.
For example, developers skilled in Delphi/VB6 can be difficult to
find. Newer languages bring general syntactical and quality-of-life
improvements, not to mention there are fewer available detection

capabilities for emerging technologies. Malware developed in
Delphi or VB6 has not stopped entirely, however, with malware such
as GuLoader57 having been identified as recently as late 2019.

CONCLUSIONS

DELPHI & VB6 – PASSING THE BATON

Cobalt Strike has gained a high degree of infamy through its prevalence within the kill chain of many
high-profile ransomware attacks and nation-state APTs. Cobalt Strike beacons are primarily used as
a second-stage payload to facilitate lateral movement within the target network and to simulate the
actions of an advanced adversary.

Cobalt Strike was developed with the intent of being used by security
practitioners to strengthen their defenses against such advanced
adversarial tactics. But pirated versions of the software (as well as
the product source code) have been leaked online, meaning that it
is no longer just security practitioners who now have access to this
advanced tooling.

BlackBerry has seen a large uptick in use of initial stagers for Cobalt
Strike being compiled using Go, and more recently in Nim. These
initial stagers are the binary used to facilitate first-stage, initial
access by reaching out to download the Cobalt Strike beacon

from a TeamServer. This server is responsible for serving the
beacons themselves.

It is important that defenders stay ahead of the curve in catching
Cobalt Strike–related files written in these languages to enhance
defensive capability against such a formidable threat.

CONCLUSIONS

COBALT STRIKE AND SHELLCODE STAGERS – THE (NOT SO) NEW FRONTIER

39

39

Since the dawn of computing itself, the success or failure of a new language depends upon its adoption
within legitimate business.

A "thumbs up" from any industry titan can be significant to their
adoption into the mainstream. As has been frequently observed
with new programming languages and associated technologies,
the rest of industry tends to follow where the industry titans lead.

This is not always the case, however. Many cutting-edge startups
leverage new technologies that can (at least eventually) inversely
influence market leaders.

Malware developers also contribute, inadvertently, to the growing
trend. Being the first to break ground by pioneering a product (in
this case, a new malware variant) in new and uncommon languages
can be just as much of a goal and an ambition to a threat group as
it would be to a legitimate business. This achievement can mean a
greater level of kudos and reputation gain for developers, regardless
of the color of the hat that they wear.

Another aspect to consider is that analysis tools and techniques are
typically not developed by the security industry until there is a certain
level of saturation of malware being written in a new language. Even
if a language begins to pick up adoption within the business world,
it can take time for the analysis tooling to reach a point where they
are able to process these new languages in an adequate fashion, if
they ever do—with VB6 and Delphi being a case in point.

BlackBerry findings show that DLang malware appears to be the
least adopted language within the threat landscape, despite its
adoption by several industry players over the last few years. DLang
has seen an uptick in use in 2020 through mid-2021 in terms of
the development of several types of malware. This could be the
beginning of a new trend of DLang adoption within the threat
landscape. However, it’s important to note that correlation is not
equal to causation.

CONCLUSIONS

4040

DOES ADOPTION IN THE INDUSTRY MIRROR ADOPTION IN
THE THREAT LANDSCAPE?

40

40

Based on research and trends within the current threat landscape, it appears that Go has matured to
the point where it is now one of the "Go-to" languages for threat actors. This popularity is both at the APT
and commodity level for the development of malware variants.

This assumption is based upon the fact that new Go-based samples
are now appearing on a semi-regular basis, including malware
of all types, and targeting all major operating systems across
multiple campaigns.

Additionally, Go is a high-performance and well-liked language
among developers, with a recent survey conducted by golang.org
finding "ninety-one percent of participants58 specifying that they
would prefer to use Go for their next new project and eighty-nine
percent specifying that Go is satisfactory for their current team."

More code means more analysis for a security researcher and/or
an antivirus product. This requirement can mean that Go-based
malware is generally a more arduous and time-consuming analysis
proposition than a C- or C++-based sample. Furthermore, the first
Go-based custom obfuscators have started appearing, such as
"Gobfuscate" and "Garble," which add additional complexity to
the task and overall make Go a very enticing prospect to threat
actors of all levels.

These custom obfuscation techniques are also being actively
leveraged by threat actors in the development and deployment
of new Go-based malware variants, as the BlackBerry Research
& Intelligence Team recently unveiled with its discovery of the
ChaChi RAT variant.

A large number of Go-based malware variants have been
documented in the wild, from APT-level samples such as APT28's
Zebrocy loader, ransomware such as Epsilon Red and Snake, to
previously undocumented variants such as ChaChi. The Go threat
landscape has never been more active and is likely to continue on
a similar trajectory in the future.

CONCLUSIONS

GO IS BECOMING A “GO TO” INSTEAD OF A “GO WHERE?”

41

41

CONCLUSIONS

4242

THREAT HUNTING EFFICIENCY THROUGH SMALL SAMPLE SETS

Steve Miller59, former digital forensics researcher for the U.S. Department of Homeland Security, has
hit on a point that is worth emphasizing60. In an Internet full of malware samples, uncovering the “who”
behind a piece of malware can be like finding needles in a stack of needles. The act of hiding in a crowd is
a technique that has been used by attackers to impede researchers and analysts alike since the dawn of
computing. They often do so through the inclusion of benign, open-source code to conceal themselves
among the rushes.

As we’ve described, these languages can come with several improvements once they’re adopted into the
software development lifecycle of a threat actor. Although this trend might sound bad for researchers,
the inverse is also true. By using these languages for enhanced detection evasion, or for quality-of-life
improvements, they also inadvertently aid us in our hunt for malicious samples.

Due to the relatively low number of compiled binaries in these languages, it is arguably easier to
identify malicious samples. Thus, the needle-stack, as we could affectionately refer to it, is drastically
reduced in size.

As the adoption of these languages increases, the needle-stack will too. Now is the time that researchers
should look to make hay. After all, it’s summer, and the sun is shining. Or, to paraphrase Steve Miller, it’s
time to flex63.

CONCLUSIONS

IS DYNAMIC ANALYSIS MORE EFFECTIVE FOR THESE THREATS?

As stated previously, signatures for existing malware families that are based off static properties have
little success in tagging the same malware once rewritten in these more obscure languages. In situations
such as Buer and RustyBuer (as well as BazarLoader and NimzaLoader), new rules usually must be
created to tag these tangentially related variants.

So, if static signatures are being broken each time a malware family
is rewritten, is there much we can do to tag them?

We have a greater chance at catching these multi-language malware
families using dynamic or behavioral signatures, signatures that tag
behavior via sandbox output, or EDR or log data. These techniques
can be far more reliable in such instances.

Although the codebase could be ported over to this new language
and thus break the static indicators, the actions of the malware can
often stay the same. This is especially true in situations where the
malware is re-coded. In other circumstances such as shellcode
loaders, which often inject into processes using a limited subset of
Windows API calls, they can be identified using that limited subset.

The languages investigated in this report have bindings that allow
them to interface with the Win32 API and use these API calls. In
essence, they can use an almost-identical methodology to that of
more traditional languages such as C++. Particular languages can
use their own APIs in place of Win32 APIs. For example, they could

use cryptographic libraries that would restrict the visibility of certain
events. However, the use of these libraries within a binary can often
be “signaturized” too.

By taking a step back from the implementation and looking at the
core concept of how these pieces of malware interact with the
system, threat researchers and software engineers alike can create
more implementation-agnostic detection rules to be able to tag
these dynamic behaviors if static signatures fail.

Dynamic signatures do not trump their static ilk by any means. Both
are now necessary to have a comprehensive detection capability
on the endpoint and beyond, and they should be used accordingly.

FINAL THOUGHTS

This report is intended to add new insight to the existing work of the security community on the topic
of less-common programming languages and their application in malicious software and threat actor
campaigns. It is important for defenders to further the discussion on the risk and effects of not defending
against parts of the threat landscape that could seem obscure.

Malicious binaries written in languages like D, Rust, Go or Nim
currently comprise a small percentage of the languages being
used by bad actors in the world today. However, it is imperative that
the security community stay proactive in defending against the
malicious use of emerging technologies and techniques.

Programs written using the same malicious techniques but in a new
language are not usually detected at the same rate as those written
in a more mature language. The loaders, droppers and wrappers
previous discussed are in many cases simply altering the first stage
of the infection process rather than changing the core components
of the campaign. This is the latest in threat actors moving the line
just outside of the range of security software in a way that might
not trigger on later stages of the original campaign.

This discrepancy in detections can be attributed to many factors. A
smaller sample set for product testing, training and improvement
along with a lack of supporting tooling are part of the equation.
Many features that analysts and researchers have come to enjoy,
and at times rely on for binary analysis, are simply not available
during the early stages of a language’s adoption (see Figure 20.)

The limited use of these more modern technologies in comparison
to more mature workflows does not lend itself to an outpouring of
market support, but these threats are active and continue to have
a very real impact.

CONCLUSIONS

Figure 20: A comical take on reversing Rust binaries in IDA. (Source: @stevemk14ebr).

44

44

YARA RULE RELEASE

CONCLUSIONS

45

45

The following Yara rules were authored by the BlackBerry
Research & Intelligence Team to catch the threats
described in this document:

Mal_Infostealer_RemcosRAT
import "pe"

import "math"

import "hash"

rule Mal_InfoStealer_RemcosRAT

{

 meta:

 description = "Dlang wrapped RemcosRAT"

 author = "Blackberry Threat Research & Intelligence"

 strings:

 $f0 = {48 3A 2F 50 72 75 65 62 61 73 2F 43}

 $f1 = {43 43 52 59 50 54 45 52 42 4C 41 55}

 $DLang_Str1 = "C:\\D\\dmd2\\windows\\bin\\..\\..\\src\\phobos\\std\\utf.d" ascii wide

 $DLang_Str2 = "C:\\D\\dmd2\\windows\\bin\\..\\..\\src\\phobos\\std\\file.d" ascii wide

 $DLang_Str3 = "C:\\D\\dmd2\\windows\\bin\\..\\..\\src\\phobos\\std\\format.d" ascii wide

 $DLang_Str4 = "C:\\D\\dmd2\\windows\\bin\\..\\..\\src\\phobos\\std\\base64.d" ascii wide

 $DLang_Str5 = "C:\\D\\dmd2\\windows\\bin\\..\\..\\src\\phobos\\std\\stdio.d" ascii wide

 condition:

 // Must be MZ file

 uint16(0) == 0x5a4d and

 // Must be less than

 filesize < 700KB and

 // Must have exact import hash

 pe.imphash() == "06f23da70e8da5f1231dae542708d4b9" and

 // Must have Strings

 all of ($f*) and 3 of ($DLang_Str*) }
45

45

YARA RULE RELEASE

CONCLUSIONS

Mal_Ransom_OutCrypt
import "pe"

import "math"

import "hash"

rule Mal_Ransom_OutCrypt

{

 meta:

 description = "OutCrypt Ransomware"

 author = "Blackberry Threat Research & Intelligence"

 strings:

 $f0 = {B9 E0 79 46 00 B8 2A 00 00 00}

 $f1 = {BB 20 7A 46 00}

 $f2 = {B9 90 79 46 00 51 6A 13 FF 75 24 FF 75 20 BA 50 A7 46 00 52 E8 66 DA 00 00 83 C4 14 52 50 E8 68 19 00 00 8D 45 A8 E8 64 CD 00 00

8D 45 B4 E8 5C CD 00 00 C7 45 FC 01 00 00 00 8D 8D F4 FF FF FF 6A 01 51 68 90 70 46 00 E8 2A DA 00 00 83 C4 0C E8 02 00 00 00 EB 10}

 $f3 = {BA D0 9B 46 00}

 $f4 = "HESOYAMAEZAKMIRIPAZHAHESOYAMAEZAKMIRIPAZHA" ascii wide

 condition:

 // Must be MZ file

 uint16(0) == 0x5a4d and

 // Must be less than

 filesize < 700KB and

 // Must have exact import hash

 pe.imphash() == "a584e0e9fb9f4fbc415a1ef3c40e8812" and

 // Must have Strings

 all of ($f*)

}

46

46

YARA RULE RELEASE

Mal_Ransom_Vovalex
import "pe"

import "math"

import "hash"

rule Mal_Ransom_Vovalex

{

 meta:

 description = "Vovalex Ransomware"

 author = "Blackberry Threat Research & Intelligence"

 strings:

 $f0 = {52 45 41 44 4D 45 2E 56 4F 56 41 4C}

 $f1 = {6E 6F 74 65 70 61 64 00}

 $rans_note1 = "Send us a mail with proofs of transaction: VovanAndLexus@cock.li" ascii

 $rans_note2 = "README.VOVALEX.txt" ascii

 $rans_note3 = "VovanAndLexus@cock.li" ascii

 $rans_note4 = "Monero: 4B45W7V1sJAZBnPSnvcipa5k7BRyC4w8GCTfQCUL2XRx5CFzG3iJtEk2kqEvFbF7FagEafRYFfQ6FJnZmep5TsnrSfxpMkS" ascii

 $rans_note5 = "Send 0.5 XMR to this Monero wallet: 4B45W7V1sJAZBnPSnvcipa5k7BRyC4w8GCTfQCUL2XRx5CFzG3iJtEk2kqEvFbF7FagEafRYFfQ6FJnZmep5TsnrSfxpMkS" ascii

 condition:

 // Must be a 64-bit executable

 pe.is_64bit() and

 // Must have Strings

 all of ($f*) and 4 of ($rans_note*)

}

CONCLUSIONS

47

47

YARA RULE RELEASE

Mal_ShellcodeLoader_Go
rule Mal_ShellcodeLoader_Go

{

 meta:

 author = "Blackberry Threat Research & Intelligence"

 description = "Tags Go Specific build tags and the presence of shell code headers"

 strings:

 $Go1 = "go.buildid" ascii wide

 $Go2 = "Go build ID:" ascii wide

 $shellcode_fiber_header_x86 = {fc e8 (89|82) 00 00 00 60 89 e5 31 d2}

 $shellcode_fiber_header_x64 = {fc 48 83 e4 f0 e8 (c0|cc) 00 00 00}

 condition:

 uint16(0) == 0x5a4d

 and ($Go1 or $Go2)

 and ($shellcode_fiber_header_x86 or $shellcode_fiber_header_x64)

}

CONCLUSIONS

48

48

YARA RULE RELEASE

Mal_ShellcodeLoader_Nim
rule Mal_ShellcodeLoader_Nim

{

 meta:

 author = "Blackberry Threat Research & Intelligence"

 description = "Tags Nim Specific function name and either shellcode headers or the presence of the string shellcode"

 strings:

 $nim_outOfMemHook = {6F75744F664D656D486F6F6B5F5F6B5A4E61413775314D665357355A656F47767738786700}

 $shellcode_fiber_header_x86 = {fc e8 (89|82) 00 00 00 60 89 e5 31 d2}

 $shellcode_fiber_header_x64 = {fc 48 83 e4 f0 e8 (c0|cc) 00 00 00}

 $shellcode = "shellcode" nocase

condition:

 uint16(0) == 0x5a4d

 and $nim_outOfMemHook

 and (

 ($shellcode_fiber_header_x86 or $shellcode_fiber_header_x64)

or $shellcode)

}

CONCLUSIONS

49

49

1 Milam, Eric. (2021, July 6). About Eric Milam. Retrieved from LinkedIn:

https://www.linkedin.com/in/eric-milam/

2 BlackBerry Research & Intelligence Team, The. (2021, July 6). About The BlackBerry Research & Intelligence Team.
Retrieved from BlackBerry:

https://blogs.blackberry.com/en/author/the-blackberry-research-and-intelligence-team

3 Wikipedia. (2021, July 6). ILOVEYOU computer worm. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/ILOVEYOU

4 Bleeping Computer. (2020, Oct 12). BazarLoader used to deploy Ryuk ransomware on high-value targets. Retrieved
from Bleeping Computer:

https://www.bleepingcomputer.com/news/security/bazarloader-used-to-deploy-ryuk-ransomware-on-
high value-targets/

5 Marschalek, Marion. (2014, July 10). Not old enough to be forgotten: the new chic of Visual Basic

6. Retrieved from Virus Bulletin: https://www.virusbulletin.com/virusbulletin/2014/07/
not-old-enough-be-forgotten-new-chic-visual-basic-6

6 Muhammad, I., Ahmed, S., Vaish, A. (2018, Sept 20). Increased Use of a Delphi Packer to Evade Malware

Classification. Retrieved from FireEye: https://www.fireeye.com/blog/threat-research/2018/09/increased-
use-of-delphi-packer-to-evade-malware-classification.html

7 Wikipedia. (2021, July 6). YARA. Retrieved from Wikipedia: https://en.wikipedia.org/wiki/YARA

8 Buber, Zohar. (2020, Nov 18). How to Identify Cobalt Strike on Your Network. Retrieved from Dark Reading:

https://www.darkreading.com/threat-intelligence/
how-to-identify-cobalt-strike-on-your-network/a/d-id/1339357

9 Yu, J. (2020, Nov 24). Blackrota, a heavily obfuscated backdoor written in Go. Retrieved from Netlab:

https://blog.netlab.360.com/blackrota-a-heavily-obfuscated-backdoor-written-in-go/

10 BlackBerry. (2021, June 23). PYSA Loves ChaChi: a New GoLang RAT. Retrieved from BlackBerry:

https://blogs.blackberry.com/en/2021/06/pysa-loves-chachi-a-new-golang-rat

11 GitHub. (2021, July 6). Burrowers/Garble. Retrieved from GitHub:

https://github.com/burrowers/garble

12 GitHub. (2021, July 6). Moloch--/Denim. Retrieved from GitHub:

https://github.com/moloch--/denim

13 GitHub. (2021, July 6). CasualX/Obfstr. Retrieved from GitHub: https://github.com/CasualX/obfstr

14 Quinn, J. (2020, Aug 14). EmoCrash: Exploiting A Vulnerability In Emotet Malware For

Defense. Retrieved from Binary Defense Blog: https://www.binarydefense.com/
emocrash-exploiting-a-vulnerability-in-emotet-malware-for-defense/

15 Cylance Team, The. (2017, Dec 12). Cylance vs. Emotet Infostealer Malware. Retrieved from BlackBerry: https://
blogs.blackberry.com/en/2017/12/cylance-vs-emotet-infostealer-malware

16 GlobalStats, Statcounter. (2021, June). Operating System Market Share Worldwide. Retrieved from Statcounter:

https://gs.statcounter.com/os-market-share

17 Gatlan, Sergiu. (2019, Oct 1). New Adwind RAT Variant Used Against the US Petroleum Sector.

Retrieved from Bleeping Computer: https://www.bleepingcomputer.com/news/security/
new-adwind-rat-variant-used-against-the-us-petroleum-sector/

18 Crawley, Kim. (2019, Aug 27). Mirai Botnet Spawns Echobot Malware. Retrieved from BlackBerry:

https://blogs.blackberry.com/en/2019/08/mirai-botnet-spawns-echobot-malware

19 (2018, July 6). Malware “WellMess” Targeting Linux and Windows. Retrieved from JPCERT

https://blogs.jpcert.or.jp/en/2018/07/malware-wellmes-9b78.html

20 Wikipedia. (2021, July 6). Cozy Bear. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Cozy_Bear

21 Mechtinger, A. (2021, Jan 5). Operation ElectroRAT: Attacker Creates Fake Companies to Drain

Your Crypto Wallets. Retrieved from INTEZER: https://www.intezer.com/blog/research/
operation-electrorat-attacker-creates-fake-companies-to-drain-your-crypto-wallets/

22 Cylance Team, The. (2015, April). MATH VS. MALWARE – A Cylance Whitepaper. Retrieved from

https://1c7qp243xy9g1qeffp1k1nvo-wpengine.netdna-ssl.com/wp-content/uploads/2015/04/Math-
Vs-Malware-White-Paper.pdf

23 Skipper, Chad. (2016, July 01). No More Sacrificial Lambs. Retrieved from BlackBerry:

https://blogs.blackberry.com/en/2016/07/no-more-sacrificial-lambs

24 D Language Foundation, The. (2021, July 8). Areas of D usage. Retrieved from DLang.org:

https://dlang.org/areas-of-d-usage.html

25 Mandia, K. (2020, December 8). FireEye Shares Details of Recent Cyber Attack, Actions to Protect Community.

Retrieved from FireEye: https://www.fireeye.com/blog/products-and-services/2020/12/fireeye-shares-
details-of-recent-cyber-attack-actions-to-protect-community.html

26 Abrams, L. (2021, January 29). Vovalex is likely the first ransomware written in D. Retrieved

from Bleeping Computer: https://www.bleepingcomputer.com/news/security/
vovalex-is-likely-the-first-ransomware-written-in-d/

27 BlackBerry Research & Intelligence Team, The. (2021, July 6). About The BlackBerry Research

& Intelligence Team. Retrieved from BlackBerry: https://blogs.blackberry.com/en/author/
the-blackberry-research-and-intelligence-team

28 hPicheta, D. (2021). Nim in Action. Retrieved from: Mannings Publication, Co.

https://livebook.manning.com/book/nim-in-action/chapter-1/5

29 Wayback Machine, The. (2016, June 23). Launching the 2016 Nim community survey. Retrieved from Nim Lang:

https://web.archive.org/web/20160626002904/http:/nim-lang.org/news.html

30 Picheta, D. (2014, Dec 29). Version 0.10.2 released.

https://nim-lang.org/blog/2014/12/29/version-0102-released.html

31 BlackBerry Cylance Threat Research Team, The. (2019, Sept 10). Threat Spotlight: TrickBot

Infostealer Malware. Retrieved from BlackBerry: https://blogs.blackberry.com/en/2019/09/
blackberry-cylance-vs-trickbot-infostealer-malware

32 Hoare, G. (2021, July 6). Graydon/Rust-prehistory. Retrieved from GitHub:

https://github.com/graydon/rust-prehistory/commit/b0fd440798ab3cfb05c60a1a1bd2894e1618479e

33 Rust Foundation. (2021, July 6). Members. Retrieved from Rust Foundation

https://foundation.rust-lang.org/members/

34 GitHub. (2021, July 6). Microsoft/Windows-rs. Retrieved from GitHub:

https://github.com/microsoft/windows-rs%20)

35 Popper, B. (2020, May 27). The 2020 Developer Survey results are here! Retrieved from StackOverflow:

https://stackoverflow.blog/2020/05/27/2020-stack-overflow-developer-survey-results/

36 Internet Safety Research Group. (2021, July 6). Linux Kernel. Retrieved from Internet Safety Research Group.

https://www.memorysafety.org/initiative/linux-kernel/

37 Goulding, J. (2020, Jan 20). What is Rust and why is it so popular? Retrieved from StackOverflow:

https://stackoverflow.blog/2020/01/20/what-is-rust-and-why-is-it-so-popular/

38 Cimpanu, Catalin. (2019, Feb 11). Microsoft: 70 percent of all security bugs are

memory safety issues. Retrieved from ZDNet: https://www.zdnet.com/article/
microsoft-70-percent-of-all-security-bugs-are-memory-safety-issues/

39 Rust. (2021, July 6). Why Cargo Exists. Retrieved from The Cargo Book:

https://doc.rust-lang.org/cargo/guide/why-cargo-exists.html

40 BlackBerry Research & Intelligence Team, The. (2020, Nov 11). The Art of Targeted Phishing: How Not to Get
Hooked. Retrieved from BlackBerry:

https://blogs.blackberry.com/en/2020/11/the-art-of-targeted-phishing-how-not-to-get-hooked

41 Dr. Web. (2016, Sept 8). Doctor Web discovers Linux Trojan written in Rust. Retrieved from Dr. Web:

https://news.drweb.com/show/?i=10193&lng=en&c=14

42 Szorc, G. (2021, July 6). Indygreg/PyOxidizer. Retrieved from GitHub:

https://github.com/indygreg/PyOxidizer

43 GitHub. (2021, July 6). Darkarp/Chromepass. Retrieved from GitHub:

https://github.com/darkarp/chromepass

44 Pike, R. (2012, October 25). Go at Google: Language Design in the Service of Software Engineering. Retrieved from

Google, Inc.: https://talks.golang.org/2012/splash.article46

45 Ramanathan, N. (2021, June 19). Goroutines. Retrieved from Go Lang Bot:

https://golangbot.com/goroutines/

46 Debian Wiki. (2021, January 2). Apt. Retrieved from Debian Wiki:

https://wiki.debian.org/Apt

47 Broadcom. (2012, Sept 18). Endpoint Protection. Retrieved from Broadcom: https://community.
broadcom.com/symantecenterprise/communities/community-home/librarydocuments/view
document?DocumentKey=7a3cd022-0705-43fb-8c11-181ec86b2c74&CommunityKey=1ec
f5f55-9545-44d6-b0f4-4e4a7f5f5e68&tab=librarydocuments

48 GitHub. (2021, July 6). StratisIOT/Gobfuscator. Retrieved from GitHub:

https://github.com/StratisIOT/gobfuscator

49 Hankins, J. (2020, December 2). Automated string de-gobfuscation. Retrieved from Kryptos Logic:

https://www.kryptoslogic.com/blog/2020/12/automated-string-de-gobfuscation/

50 Pimental, J. Automatic Gobfuscator Deobfuscation with EKANS Ransomware. Retrieved from

GoggleHeadedHacker: https://www.goggleheadedhacker.com/blog/post/22

51 BlackBerry Research & Intelligence Team, The. (2021, June 23). PYSA Loves ChaChi: a New GoLang RAT. Retrieved

from BlackBerry: https://blogs.blackberry.com/en/2021/06/pysa-loves-chachi-a-new-golang-rat

52 Osbourne, Charlie. (2021, June 23). ChaChi: a new GoLang Trojan used in attacks

against US schools. Retrieved from ZDNet: https://www.zdnet.com/article/
chachi-golang-a-new-go-trojan-focuses-on-attacking-us-schools/

53 Center for Internet Security, The. (2021, March 15). The SolarWinds Cyber-Attack: What You Need to Know.

Retrieved from the Center for Internet Security: https://www.cisecurity.org/solarwinds/

54 Developers, FireEye. (2021, July 6) FireEye. Retrieved from GitHub: https://github.com/fireeye

55 Byt3bl33d3r. (2021, July 6). Byt3bl33d3r/OffensiveNim. Retrieved from GitHub: https://github.com/
byt3bl33d3r/OffensiveNim

56 GitHub. (2021, July 6). Epi052/Feroxbuster. Retrieved from GitHub: https://github.com/epi052/feroxbuster

57 Wanve, U. (2020, June 25). GuLoader: Peering Into a Shellcode-based Downloader. Retrieved from CrowdStrike:

https://www.crowdstrike.com/blog/guloader-malware-analysis/

58 Merrick, A. (2021, March 9). Go Developer Survey 2020 Results. Retrieved from The Go Blog:

https://blog.golang.org/survey2020-results

59 BlackBerry (2021, June 23). PYSA Loves ChaChi: a New GoLang RAT. Retrieved from BlackBerry:

https://blogs.blackberry.com/en/2021/06/pysa-loves-chachi-a-new-golang-rat

60 Miller, Steve. (2021, July 6). About Steve Miller. Retrieved from LinkedIn:

https://www.linkedin.com/in/stevenumiller/

61 Miller, S. (2021, June 14). Tweet. Retrieved from Twitter:

https://twitter.com/stvemillertime/status/1404532957604323329

62 Eckels, S. (2021, June 14). Tweet. Retrieved from Twitter:

https://twitter.com/stevemk14ebr/status/1399777922743996417

5050

Endnotes

About BlackBerry: BlackBerry (NYSE: BB; TSX: BB) provides intelligent security
software and services to enterprises and governments around the world. The
company secures more than 500M endpoints including over 175M cars on
the road today. Based in Waterloo, Ontario, the company leverages AI and
machine learning to deliver innovative solutions in the areas of cybersecurity,
safety and data privacy solutions and is a leader in the areas of endpoint
security management, encryption, and embedded systems. BlackBerry’s vision

is clear—to secure a connected future you can trust.

For more information, visit BlackBerry.com and follow @BlackBerry.

Trademarks, including but not limited to BLACKBERRY, EMBLEM Design and QNX are the trademarks
or registered trademarks of BlackBerry Limited, its subsidiaries and/or affiliates, used under license,
and the exclusive rights to such trademarks are expressly reserved. All other trademarks are the prop-
erty of their respective owners. BlackBerry is not responsible for any third-party products or services.

51

51

